47 research outputs found

    Correlation Maps Allow Neuronal Electrical Properties to be Predicted from Single-cell Gene Expression Profiles in Rat Neocortex

    Get PDF
    The computational power of the neocortex arises from interactions of multiple neurons, which display a wide range of electrical properties. The gene expression profiles underlying this phenotypic diversity are unknown. To explore this relationship, we combined whole-cell electrical recordings with single-cell multiplex RT-PCR of rat (p13-16) neocortical neurons to obtain cDNA libraries of 26 ion channels (including voltage activated potassium channels, Kv1.1/2/4/6, Kvβ1/2, Kv2.1/2, Kv3.1/2/3/4, Kv4.2/3; sodium/potassium permeable hyperpolarization activated channels, HCN1/2/3/4; the calcium activated potassium channel, SK2; voltage activated calcium channels, Caα1A/B/G/I, Caβ1/3/4), three calcium binding proteins (calbindin, parvalbumin and calretinin) and GAPDH. We found a previously unreported clustering of ion channel genes around the three calcium-binding proteins. We further determined that cells similar in their expression patterns were also similar in their electrical properties. Subsequent regression modeling with statistical resampling yielded a set of coefficients that reliably predicted electrical properties from the expression profile of individual neurons. This is the first report of a consistent relationship between the co-expression of a large profile of ion channel and calcium binding protein genes and the electrical phenotype of individual neocortical neuron

    A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale

    Get PDF
    In this era of complete genomes, our knowledge of neuroanatomical circuitry remains surprisingly sparse. Such knowledge is however critical both for basic and clinical research into brain function. Here we advocate for a concerted effort to fill this gap, through systematic, experimental mapping of neural circuits at a mesoscopic scale of resolution suitable for comprehensive, brain-wide coverage, using injections of tracers or viral vectors. We detail the scientific and medical rationale and briefly review existing knowledge and experimental techniques. We define a set of desiderata, including brain-wide coverage; validated and extensible experimental techniques suitable for standardization and automation; centralized, open access data repository; compatibility with existing resources, and tractability with current informatics technology. We discuss a hypothetical but tractable plan for mouse, additional efforts for the macaque, and technique development for human. We estimate that the mouse connectivity project could be completed within five years with a comparatively modest budget.Comment: 41 page

    Bergmann Glia and the Recognition Molecule CHL1 Organize GABAergic Axons and Direct Innervation of Purkinje Cell Dendrites

    Get PDF
    The geometric and subcellular organization of axon arbors distributes and regulates electrical signaling in neurons and networks, but the underlying mechanisms have remained elusive. In rodent cerebellar cortex, stellate interneurons elaborate characteristic axon arbors that selectively innervate Purkinje cell dendrites and likely regulate dendritic integration. We used GFP BAC transgenic reporter mice to examine the cellular processes and molecular mechanisms underlying the development of stellate cell axons and their innervation pattern. We show that stellate axons are organized and guided towards Purkinje cell dendrites by an intermediate scaffold of Bergmann glial (BG) fibers. The L1 family immunoglobulin protein Close Homologue of L1 (CHL1) is localized to apical BG fibers and stellate cells during the development of stellate axon arbors. In the absence of CHL1, stellate axons deviate from BG fibers and show aberrant branching and orientation. Furthermore, synapse formation between aberrant stellate axons and Purkinje dendrites is reduced and cannot be maintained, leading to progressive atrophy of axon terminals. These results establish BG fibers as a guiding scaffold and CHL1 a molecular signal in the organization of stellate axon arbors and in directing their dendritic innervation

    COBALT-CATALYZED HYDROFUNCTIONALIZATION/CYCLIZATION OF UNSATURATED HYDROCARBONS

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOS

    Ligand-controlled cobalt-catalyzed regiodivergent hydroboration of aryl,alkyl-disubstituted internal allenes

    No full text
    10.1039/c9sc06136cChemical Science11102783-278

    Object Tracking in Satellite Videos Based on Improved Kernel Correlation Filter Assisted by Road Information

    No full text
    Video satellites can stare at target areas on the Earth’s surface to obtain high-temporal-resolution remote sensing videos, which make it possible to track objects in satellite videos. However, it should be noted that the object size in satellite videos is usually small and has less textural property, and the moving objects in satellite videos are easily occluded, which puts forward higher requirements for the tracker. In order to solve the above problems, consider that the remote sensing image contains rich road information, which can be used to constrain the trajectory of the object in a satellite video, this paper proposes an improved Kernel Correlation Filter (KCF) assisted by road information to track small objects, especially when the object is occluded. Specifically, the contributions of this paper are as follows: First, the tracking confidence module is reconstructed, which integrates the peak response and the average peak correlation energy of the response map to more accurately judge whether the object is occluded. Then, an adaptive Kalman filter is designed to adaptively adjust the parameters of the Kalman filter according to the motion state of the object, which improves the robustness of tracking and reduces the tracking drift after the object is occluded. Last but not least, an object tracking strategy assisted by road information is recommended, which searches for objects with road information as constraints, to locate objects more accurately. After the above improvements, compared with the KCF tracker, our method improves the tracking precision by 35.9% and the tracking success rate by 18.1% with the tracking rate at a speed of 300 frames per second, which meets the real-time requirements

    Synaptic dynamics control the timing of neuronal excitation in the activated neocortical microcircuit

    No full text
    It is well established that sensory stimulation results in the activity of multiple functional columns in the neocortex. The manner in which neurones within each column are active in relation to each other is, however, not known. Multiple whole-cell recordings in activated neocortical slices from rat revealed diverse correlation profiles of excitatory synaptic input to different types of neurones. The specific correlation profile between any two neurones could be predicted by the settings of synaptic depression and facilitation at the input synapses. Simulations further showed that patterned activity is essential for synaptic dynamics to impose the temporal dispersion of excitatory input. We propose that synaptic dynamics choreograph neuronal activity within the neocortical microcircuit in a context-dependent manner

    Cobalt-Catalyzed Asymmetric Hydroboration/Cyclization of 1,6-Enynes with Pinacolborane

    No full text
    We report a cobalt-catalyzed asymmetric hydroboration/cyclization of 1,6-enynes with catalysts generated from Co­(acac)<sub>2</sub> and chiral bisphosphine ligands and activated in situ by reaction with pinacol­borane (HBpin). A variety of oxygen-, nitrogen-, and carbon-tethered 1,6-enynes underwent this asymmetric transformation, yielding both alkyl- and vinyl-substituted boronate esters containing chiral tetrahydrofuran, cyclopentane, and pyrrolidine moieties with high to excellent enantio­selectivities (86%–99% ee)
    corecore